<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e33" altimg="si9.svg"><mml:mi>s</mml:mi></mml:math>-Numbers of embeddings of weighted Wiener algebras

نویسندگان

چکیده

In this paper we study the asymptotic behavior of Kolmogorov, approximation, Bernstein and Weyl numbers embeddings Amixs,r(Td)→L2(Td) Amixs,r(Td)→A(Td), where Amixs,r(Td) is a weighted Wiener algebra mixed smoothness s A(Td) itself, both defined on d-dimensional torus Td. Our main interest consists in calculation associated constants.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

amenability of banach algebras

chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...

15 صفحه اول

Wiener numbers of random pentagonal chains

The Wiener index is the sum of distances between all pairs of vertices in a connected graph. In this paper, explicit expressions for the expected value of the Wiener index of three types of random pentagonal chains (cf. Figure 1) are obtained.

متن کامل

On approximation numbers of Sobolev embeddings of weighted function spaces

We investigate asymptotic behaviour of approximation numbers of Sobolev embeddings between weighted function spaces of Sobolev–Hardy–Besov type with polynomials weights. The exact estimates are proved in almost all cases. © 2005 Elsevier Inc. All rights reserved.

متن کامل

Entropy Numbers of Embeddings of Weighted Besov Spaces

We investigate the asymptotic behavior of the entropy numbers of the compact embedding B1 p1,q1(R d , α) ↪→ B2 p2,q2(R ). Here Bs p,q (R d , α) denotes a weighted Besov space, where the weight is given by wα(x) = (1 + |x |2)α/2, and B2 p2,q2 (Rd ) denotes the unweighted Besov space, respectively. We shall concentrate on the so-called limiting situation given by the following constellation of pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2022

ISSN: ['0021-9045', '1096-0430']

DOI: https://doi.org/10.1016/j.jat.2022.105745